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Abstract. Properties of low-dimensional spin-Peierls systems are described by using a one-dimensional
S = 1/2 antiferromagnetic Heisenberg chain linearly coupled to a single phonon mode of wave vector
π (whose contribution is expected to be dominant). By exact diagonalizations of small rings with up to
24 sites supplemented by a finite size scaling analysis, static and dynamical properties are investigated.
Numerical evidences are given for a spontaneous discrete symmetry breaking towards a spin gapped phase
with a frozen lattice dimerization. Special emphasis is put on the comparative study of the two inorganic
spin-Peierls compounds CuGeO3 and NaV2O5 and the model parameters are determined from a fit of the
experimental spin gaps. We predict that the spin-phonon coupling is 2 or 3 times larger in NaV2O5 than
in CuGeO3. Inelastic neutron scattering spectra are calculated and similar results are found in the single
phonon mode approximation and in the model including a static dimerization. In particular, the magnon
S = 1 branch is clearly separated from the continuum of triplet excitations by a finite gap.

PACS. 64.70.Kb Solid-solid transitions – 71.27.+a Strongly correlated electron systems; heavy fermions
– 75.10.Jm Quantized spin models

1 Introduction

Recently, a renewed interest for one dimensional (1D) spin
chains was created by the observation of spin-Peierls tran-
sitions in the inorganic compounds CuGeO3 [1] and
α′-NaV2O5 [2–5]. Below some critical temperature TSP,
the spin-Peierls phase is experimentally inferred from a
rapid drop of the spin susceptibility. The low temperature
phase is characterized by the opening of a spin gap ∆ (see
below) and the dimerization of the lattice along the chain
direction as confirmed for example by X-rays diffraction in
CuGeO3 [6] and NaV2O5 [3] or by Na NMR experiments
in NaV2O5 [4].
In general, these compounds are well described above

the transition temperature by a 1D frustrated antiferro-
magnetic (AF) Heisenberg chain. The nearest neighbor
and next-nearest neighbor spin exchange integrals J and
J ′ can be determined by a fit of the magnetic suscepti-
bility χ at high temperatures. In fact the position of the
maximum of the curve and more generally the magnetic
properties only depend on the frustration ratio α = J ′/J .
Parameters such as J = 160 K and α = 0.36 [7] or

J = 150 K and α = 0.24 [8] have been suggested for
CuGeO3. Further studies [9,10] seem to confirm that the
dimerization is large in this system and we shall take α =
0.36 in the rest of the paper. For the novel NaV2O5 system
J = 440 K and α ≈ 0 have been proposed [5] in good
agreement with references [2,11].
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The zero temperature spin gap ∆ has been determined
by several means. Inelastic neutron scattering (INS) gives
a direct measure of it. So far INS has been performed on
single crystals of CuGeO3 and powder NaV2O5 samples.
Values of ∆ ' 2.1 meV [12,13] and ∆ = 9.8 meV [3] have
been reported, respectively. Other more indirect methods
like NMR can also provide a measure of the magnitude of
the spin gap. 63Cu or 65Cu NMR have been performed on
single crystals of CuGeO3 [14] and

23Na NMR on aligned
polycrystals of NaV2O5 [4]. The local magnetic suscepti-
bility is proportional to the NMRKnight shift and the spin
gap is estimated by a fit of the temperature dependence of
the local susceptibility below the transition temperature.
A value of ∆ ' 8.4 meV was found for NaV2O5. A third
independent estimation of ∆ can be obtained by a fit of
the low temperature bulk magnetic susceptibility of single
crystals measured for instance by a SQUID-magnetometer
technique. Reference [5] reports a value of ∆ ' 7.3 meV
for NaV2O5.

The dimensionless ratio ∆/J is the crucial parameter
needed in our theoretical analysis. Results for CuGeO3 are
now well established and the value of ∆/J = 0.151 is often
used in the literature. Nonetheless ratios such as ∆/J =
0.203 [3], ∆/J = 0.175 [4] or ∆/J = 0.193 [5] can be
found for NaV2O5. Since this last estimation was obtained
from experiments performed on single crystals we have
thus decided to use it as a reference. In any case, the
quite small differences between the previous experimental
values are not relevant.



20 D. Augier and D. Poilblanc: Dynamical properties of low-dimensional spin-Peierls systems

Theoretically, the spin dynamics of the 1D Heisenberg
chain depends strongly on the frustration parameter α.
Indeed, for α > αc ' 0.241 a gap appears in the spin ex-
citation spectrum [15,16]. Therefore, we expect that the
two previous spin-Peierls compounds will have quite dif-
ferent magnetic properties. CuGeO3 is dominated by in-
trachain frustration. On the other hand, NaV2O5 will be-
have, at high temperatures, more closely to an unfrus-
trated Heisenberg chain and, at low temperatures, the
small interchain frustration alone cannot be responsible
for the opening of a spin gap. The coupling to the lat-
tice is therefore expected to play a dominant role in the
transition at least for NaV2O5. In order to study their in-
terplay, the frustration and the spin-lattice coupling have
to be treated on equal footings. This is the purpose of this
paper.

It is well known that a 1D system shows no phase
transition at finite temperature because of quantum fluc-
tuations. Interchain couplings are necessary to obtain a
finite transition temperature. However, they are thought
to be small and will be neglected hereafter in the study of
zero temperature properties.

So far, there have been various attempts to treat the
coupling to the lattice by considering a static dimerization
δ of the exchange integral (so called adiabatic approxima-
tion or frozen phonon approximation). The value of δ is
determined in order to obtain the experimental value of
the zero temperature spin gap ∆. Dimerizations such as
δ = 0.014 [7] and δ = 0.048 [17] were proposed for CuGeO3
and for NaV2O5, respectively, in order to reproduce the
measured spin gaps (assuming ∆ ' 0.151J and ∆ '
0.193J for CuGeO3 and NaV2O5, respectively). Calcula-
tions using this approach have been performed
in order to make first comparisons with experiments
[9,18–20].

In this paper we use a modification of the previous
static model to describe the physical properties of one-
dimensional spin-Peierls compounds below the transition
temperature. For convenience, the previous ad hoc static
dimerization discussed above is replaced here by a single
dynamical optical phonon mode (Sect. 2). As far as ther-
modynamic properties are concerned, this model should
be, in fact, equivalent in the thermodynamic limit to a
model where the lattice is treated at a mean field level [21].
However, this new approach has some advantages: (i) in a
self-consistent mean-field treatment the procedure is rath-
er lengthy: one has to calculate the dimerization that cor-
responds to the zero temperature spin gap, one obtains
the lattice coupling constant and then one has to min-
imize the total free energy which incorporates the elas-
tic part with respect to the dimerization; on the other
hand, our model automatically includes the elastic energy
and avoids the lengthy iterative procedure needed to con-
verge to the equilibrium static lattice dimerization; (ii)
this single mode approximation provides a basis for fu-
ture more elaborate studies of spin-Peierls chains includ-
ing a macroscopic number of phonon modes (i.e. propor-
tional to the system length L) [22]; indeed, similar trun-
cations of phononic space are always necessary; therefore,

the present work constitutes an exploratory study of such
truncation methods and gives insights on how to control
them; (iii) our approach enables to study precisely and
learn about the mechanism of the lattice spontaneous sym-
metry breaking in the spin-Peierls transition and finite size
scalings in the presence of phonons; this preliminary work
on a single mode treatment will be useful in a multiple
phonon model.
Within this single mode approximation, we truncate

the Hilbert space of the phonons and show in details that
this approximation is well controlled (Sect. 3). Using a
finite size scaling analysis (discussed in detail in Sect. 4)
the dimerization and the spin gap resulting from a sponta-
neous discrete symmetry breaking of the lattice periodicity
are calculated (Sect. 5). Focussing primarily on CuGeO3
and NaV2O5 materials, we then establish a simple relation
between the parameters of the model in such a way to en-
force the constraint that the numerically calculated spin
gap is equal to the experimental gap. The role of the pa-
rameters is discussed. In the last part (Sect. 6), we study
the spin dynamics. In particular, we investigate the role
of the lattice dynamics on the low energy magnon branch
and low energy structures in the dynamical spin structure
factor. Our results are compared to the ones obtained in
the static model [17,19,23,24].

2 Models

Our starting point is the 1D frustrated AF Heisenberg
chain. For practical applications, the previous values of J
and α will be used: J = 160 K, α = 0.36 for CuGeO3 [7]
and J = 440 K, α = 0 for NaV2O5 [5]. In addition, a
coupling between spins and dispersionless optical phonons
(magneto-elastic coupling) is considered. For sake of
simplicity we assume a linear dependence of the exchange
integrals on the relative atomic displacements {ui}
[25,26],

H = J
∑
i

((1 + λui) Si · Si+1 + αSi · Si+2) + H
0
ph, (1)

where λ is the coupling constant. H0ph is the phononic
Hamiltonian of identical independent quantum oscillators,

H0ph =
∑
i(
p2i
2m +

1
2Ku

2
i ) (pi is the conjugate momentum

associated to the atomic displacement ui). The atomic dis-
placements ui and their conjugate variables can easily be
expressed in term of the canonical phonon creation and

annihilation operators b†k and bk. Since the spin suscepti-
bility diverges (for α < 0.5 [27,28]) at momentum k = π
we expect that the coupling to the lattice will be dominant
at k = π which corresponds, in fact, to the modulation of
the spin-Peierls ground state. Therefore, from now on, we
shall only keep a single k = π phonon mode [29]. In this
case, using,

ui ' (−1)
i

√
1

2mLΩ
(bπ + b

†
π)
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(Ω2 = K/m and L is the number of sites), the final Hamil-
tonian becomes

H = J
∑
i

{(
1 +
g (−1)i
√
L
(bπ + b

†
π)
)
Si · Si+1

+ αSi · Si+2
}
+H0ph, (2)

where g = λ
√

1
2mΩ is the dimensionless coupling constant.

Within this approximation H0ph can be rewritten as H
0
ph =

Ω(b†πbπ+
1
2 ) whereΩ is the energy of a phononic quantum.

Before going further, we can already discuss qualita-
tively the physics contained in Hamiltonian (2). Indeed,
we expect in the thermodynamic limit a discrete symme-
try breaking corresponding to a doubling of the unit-cell.
This can be described very simply at the MF level. By
assuming a dimerization δ given by the order parameter
g√
L
〈bπ + b

†
π〉MF and omitting a constant part, the MF

Hamiltonian takes the form,

HMF = J
∑
i

((1 + δ(−1)i)Si · Si+1 + αSi · Si+2)

+
1

2
L
K

λ2
δ2, (3)

where the last term is the elastic energy loss. This is ex-
actly the well known model describing a static dimeriza-
tion below the transition temperature in spin-Peierls sys-
tems [7,8]. Interestingly enough, a similar effective model
has also been used to describe conjugated hydrocarbons
with bond alternation such as polyacetylene [30]. In this
new form, the breaking of the lattice periodicity is ex-
plicit. As a consequence the ground state becomes doubly
degenerate (the order parameter δ can take a positive or a
negative value) and a spin gap appears. The spin-Peierls
ground state is characterized by a “· · ·A−B−A−B · · · ”
pattern with a succession of strong singlet A bonds and
weak singlet B bonds (so called Valence Bond or dimer
state). Note that δ in model (3) is a variational parameter
to be determined in order to minimize the ground state
energy by an iterative procedure. In contrast, the dimer-
ization in Hamiltonian (2) arises from a dynamical sym-
metry breaking. However, it is interesting to notice that
models (3, 2) should be in fact equivalent [31] in the ther-
modynamic limit, at least as far as their thermodynamic
properties are concerned [21,32].
Static and dynamical quantities are given by exact di-

agonalizations of small chains. Using a finite size scaling
analysis, results in the thermodynamic limit are deduced.
The parameters δ on one hand and g and Ω/J on the
other hand are determined from a fit to the experimental
spin gap.

3 Truncation procedure

Let us now deal first with the numerical treatment of (2).
The total Hilbert space can be written as the tensorial
product of the space of the spin configurations (to which
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Fig. 1. Convergence of the energy per site of the lowest singlet
(◦, •) and triplet (�, �) states in units of J as a function of the
maximum number of phonons Nmax. Parameters are α = 0.36,
g = 0.5 and Ω = 0.3J . Open (filled) symbols correspond to
L = 12 (L = 20) sites.

the symmetry group of the problem is applied) times the
phononic space. However, strictly speaking, the Hilbert
space associated to the phonons is infinite even for a chain
of finite length. Indeed, the natural basis {|n〉} is sim-
ply defined by the unlimited occupation number n of the
k = π phonon mode, |n〉 = 1/

√
n! (b†π)

n|0〉. Such a diffi-
culty can nevertheless be easily handled in an exact diag-
onalization treatment [33]. The solution is to truncate the
phononic space so that the occupation number is smaller
than a fixed Nmax which has to be chosen in an appro-
priate way. Clearly, if Nmax is, let us say, an order of
magnitude larger than the exact mean occupation num-
ber 〈b†πbπ〉 the truncation procedure will not affect the
accuracy of the results which can then be considered as
basically exact. This can be seen in Figure 1 showing the
energy per site of the ground state in the spin 0 and 1
sectors (the value of α corresponds to the case of CuGeO3
and a coupling constant g = 0.5 is used) for chains of
length L = 12 and 20 plotted as a function of Nmax. Typi-
cally, the mean occupation number is smaller than 3 as in
Figures 2 and 3 (and in fact even smaller than ∼ 0.5 for
more realistic parameters) and the energy has converged
for Nmax ∼ 30. Figure 1 proves that the truncation proce-
dure is very well controlled even for rather (unphysically)
large coupling constants like g = 0.5. The results reported
in the rest of this paper are then obtained with a suffi-
ciently large value of Nmax and the preliminary studies
of the convergence of the results with increasing Nmax,
although not mentioned each time, have been performed
for each choice of the parameters of the model. Similarly,
such a truncation procedure can be used in more realistic
models including macroscopic number of phonons.
It is interesting to study the dependence of the mean

occupation number on the three parameters of the prob-
lem (length of the chain L, coupling constant g and fre-
quency of the phonons Ω) since, first, this number di-
rectly determines the practical value of Nmax to be chosen
and, secondly, it provides some physical understanding.
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Figure 1 already suggests that the mean occupation num-
ber increases with the length of the chains. To investigate
this effect in more details, the mean occupation num-
ber 〈Ψ0|b†πbπ|Ψ0〉 in the ground state |Ψ0〉 is plotted in
Figure 2 as a function of L. Clearly, 〈Ψ0|b†πbπ|Ψ0〉 (as
well as the value required for Nmax) grows linearly with
the chain length L. In fact, this effect is directly con-
nected to the breaking of the lattice symmetry as can be
seen very easily from a very simplified version of Hamilto-
nian (2). In a symmetry broken state, an effective (approx-
imate) phononic Hamiltonian Hph can be constructed by
taking MF values for the spin operators. Assuming that∑
i(−1)

i〈Si · Si+1〉MF (dimer order parameter) varies lin-

early with L one then gets Hph = Ag
√
L(bπ+b

†
π)+Ω b

†
πbπ

(A is an undetermined constant). In this approximation,
〈b†πbπ〉 = A

2g2L/Ω2 grows linearly with the length of
the chain. In addition, this simple argument also suggests
that the occupation number of the π mode scales like the
square of the dimensionless coupling g and like the inverse
square of the phonon frequency. These intuitive behaviors
are indeed well followed as can be seen in Figure 3 in a
large range of parameters.
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Fig. 2. Dependence of the mean occupation number on the
length of the chain L for g = 0.109 and Ω = 0.3J .

One also observes in Figure 1 that the singlet ground
state energy is almost converged for L = 20 (the values
of the energies for L = 12 and L = 20 at large Nmax are
indistinguishable) while finite size effects are still large for
the triplet energy because of the existence of a continuum
of states above the first triplet excitation. In the next Sec-
tion, we investigate carefully the convergence of various
physical quantities with respect to the system size. We
show that an accurate finite size analysis can be performed
to obtain extrapolations to the thermodynamic limit.

4 Finite size scaling analysis

Firstly, we focus on the size dependence of the energy per
site of the singlet ground state and of the lowest triplet
state which are expected to converge to the same value
in the thermodynamic limit. Typically, we use chains of
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Fig. 3. Mean occupation number calculated on a L = 12 site
chain versus g2 for Ω/J = 0.3 (a) and versus (J/Ω)2 for g =
0.109 (b).

length L = 8, 12, 16, 20 and 24 sites. Data are shown in
Figure 4 for α = 0.15, g = 0.45 and Ω = 0.3J . The ground
state energy per site varies roughly like 1/L2. This behav-
ior is predicted for gapless 1D chains obeying conformal
invariance [34] but seems to be still valid here in spite of
the presence of a spin gap (see later). This already suggests
that, for such parameters, the system sizes are still compa-
rable to the spin correlation length but not much larger.
The behavior of the triplet energy is more involved. An
approximate 1/L dependence is expected (giving a square
root singularity in the 1/L2 units of Fig. 4) if there is a
finite spin gap ∆ (defined by the L → ∞ extrapolation
of the difference ∆(L) = E0(S = 1, L) − E0(S = 0, L) of
the total energies of the lowest states of the singlet and
triplet spin sectors). Such a behavior seems indeed to be
observed in Figure 4.
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Fig. 4. Convergence of the energy per site of the ground state
of spin 0 (◦) and 1 (�) in units of J as a function of the inverse
of the square length of the chain 1/L2 for α = 0.15, g = 0.45
and Ω = 0.3J .

Let us now examine in details the behavior of the spin
gap ∆(L) versus L to extract values in the thermody-
namic limit. Requiring that the extrapolated ratio ∆/J of
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the model (2) is equal to the observed experimental value
will lead to some constraint on the model parameters Ω
and g. Our procedure can be summarized in three steps; (i)
a controlled truncation procedure of the phononic Hilbert
space for a large set of parameters g, Ω and system sizes
L, (ii) a finite size scaling analysis in order to accurately
determine the spin gap as a function of g and Ω; (iii) a
determination of the relation to be followed by the pa-
rameters g and Ω in order that the calculated ratio ∆/J
equals the actual experimental ratio (see Sect. 5).
We first consider the scaling behavior of the spin gap.

We have found that it scales accurately according to the
law [35,10],

∆(L) = ∆+
A

L
exp(−

L

L0
), (4)

where L0 is a typical length scale. In general L0 is of the
order of the magnetic correlation length characterizing the
decay of the equal time spin-spin correlation in real space.
As seen later, values of L0 are typically 20 lattice units
(l.u.) for parameters corresponding to CuGeO3 and 30
l.u. for NaV2O5. Therefore, with chains lengths up to 24
sites, finite size effects are still important and an accurate
extrapolation is necessary. This scaling is illustrated for
α = 0.15 < αc, g = 0.22, Ω = 0.3J (◦), for α = 0.36 > αc
(CuGeO3-like case), g = 0.089, Ω = 0.3J (�) and for α =
0 (NaV2O5-like case), g = 0.40,Ω = 0.5J (♦) in Figure 5a.
A spin gap opens for all α if g > 0. This is similar to the
mean-field treatment where the order parameter δ 6= 0
leads to the symmetry breaking and thus to the opening
of a spin gap.
In Figure 5b we compare, in the case of NaV2O5 (i.e.

α = 0), the scaling of the spin gaps calculated using the
dynamical model (2) with g = 0.275, Ω = 0.3J (◦) on
one hand and the static model (3) with δ = 0.05 (�) on
the other hand [36]. These values of the parameters have
been chosen in orde to obtain the same extrapolated spin
gap. Although the spin gaps are equal, the two models
exhibit slightly different scaling behaviors (L0 ' 30 for
the dynamical model and L0 ' 18 for the static one [17]).
At this stage, it is interesting to better understand how

in the dynamical model (2) the opening of the spin gap is
connected to the discrete symmetry breaking (as can be
seen e.g. in X-rays scattering). The first signature of this
phenomenon is the degeneracy of the ground state which
is expected in the thermodynamic limit. We have there-
fore studied the behavior with system size of the energies
Ep(S = 0), p = 0, 1, 2, of the three lowest singlet states.
The energy differences E1(S = 0) − E0(S = 0) (circles)
and E2(S = 0) − E0(S = 0) (squares) are plotted in Fig-
ure 6, in the case Ω = 0.3J , as a function of the inverse
length of the chain 1/L for α = 0.36 (open symbols) and
for α = 0 (filled symbols). The values of the coupling g
are chosen here in such a way to reproduce the experimen-
tal spin gaps of the CuGeO3 (open symbols) and NaV2O5
(filled symbols) materials (see Sect. 5). The results show
very convincingly that the singlet ground state is indeed
two-fold degenerate in the thermodynamic limit while a
finite gap for singlet excitations appears above [37]. It is
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Fig. 5. (a) Spin gap ∆ in units of J as a function of the
inverse of the length of the chain 1/L for α = 0.15, g = 0.22,
Ω = 0.3J (◦), α = 0.36, g = 0.089, Ω = 0.3J (�) and α = 0,
g = 0.40, Ω = 0.5J (♦). (b) Comparison between the behaviors
∆/J versus 1/L obtained within the dynamical model (2) for
α = 0, g = 0.275, and Ω = 0.3J (◦) and within the static
model (3) for α = 0, δ = 0.05 (�).

important to notice that the quantum numbers associated
to the translation symmetry are different for the two low-
est singlet states which correspond to momenta k = 0
and k = π. Hence, mixing of these two states leads to a
doubling of the unit cell.
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Fig. 6. Energy differences (E1(S = 0) − E0(S = 0))/J (◦, •)
and (E2(S = 0) − E0(S = 0))/J (�, �) as a function of 1/L.
Open and filled symbols correspond to α = 0.36, g = 0.109 and
Ω = 0.3J and to α = 0, g = 0.270 and Ω = 0.3J , respectively.
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The lattice dimerization can be quantitatively mea-
sured by the order parameter δ∗ = g√

L
〈(bπ+b

†
π)
2〉1/2 (the

expectation value 〈bπ + b
†
π〉 vanishes because small tun-

nelling between the two degenerate dimer states always
exists in a finite chain). δ∗ as a function of the inverse
length of the chain is plotted in Figure 7 for various pairs
of parameters (Ω, g) (see caption) chosen in such a way
that the spin gap is constant (in fact adjusted to the ac-
tual spin gap of CuGeO3 as described in Sect. 5). Extrap-
olated values of the dimerization δ∗ for different phonon
frequencies are in fact quite close, at least in the range
0.1 ≤ Ω ≤ 0.5. The dimerization δ∗ seems then to be
only determined by the magnitude of the spin gap. The
fact that δ∗, at fixed extrapolated spin gap, is indepen-
dent of the frequency Ω is consistent with the proof by
Brandt and Leschke [21] that the thermodynamic proper-
ties of the dynamical model (2) and of the static model (3)
are identical. However, it is interesting to notice that the
value obtained here (∼ 0.022) is significantly larger than
the value (∼ 0.014) needed in the MF approximation to
produce the same gap. The difference between these two
values can be simply attributed to the zero point motion
of the harmonic mode which is included only in (2).

0.00 0.05 0.10
1/L

0.015

0.018

0.021

0.024

δ∗

Fig. 7. Order parameter δ∗ as a function of the inverse of
the length of the chain 1/L for Ω = 0.1J and g = 0.062 (◦),
Ω = 0.3J and g = 0.109 (�) and Ω = 0.5J and g = 0.141 (♦)
(see text regarding the choice of parameters).

5 Comparison with experiment

The systematic finite size scaling described above has been
performed for a large set of parameters Ω/J and g. For
simplicity, let us first assume Ω/J = 0.3. The behavior
of ∆(Ω/J = 0.3, g)/J versus g is plotted in Figure 8 for
a large frustration α = 0.36 corresponding to the case of
CuGeO3 (◦) and for a non frustrated chain corresponding
to the case of NaV2O5 (�). Quite generally, the spin gap
grows with the coupling constant g as expected. Indeed, a
larger coupling to the lattice produces a larger dimeriza-
tion and then, indirectly, a larger spin gap.

The actual physical value of the ratio Ω/J is, to the
best of our knowledge, difficult to obtain from experiment.
Therefore, we shall not here restrict to any specific value
of Ω/J but rather consider a wide range 0.1 ≤ Ω/J ≤ 0.5.
However, for each value of Ω, the dimensionless coupling
constant g(Ω) can be determined by enforcing that the ex-
trapolated spin gap ratio∆(Ω, g)/J equals the experimen-
tally observed gap. The procedure is shown in Figure 8 for
Ω = 0.3J and α = 0 (NaV2O5) and α = 0.36 (CuGeO3).
The small horizontal marks correspond to the actual ex-
perimental gaps, i.e. ∆/J ' 0.151 and ∆/J ' 0.193
for CuGeO3 and NaV2O5, respectively. We then obtain
g(Ω = 0.3) ' 0.109 for CuGeO3 and g(Ω = 0.3) = 0.270
for NaV2O5. The same method was performed for two
other values of the frequency, Ω = 0.1J and Ω = 0.5J .
A relation is then obtained between Ω and g for the two
values of the frustration parameter α = 0 and α = 0.36.
This is illustrated in Figure 9. We find that Ω has to vary
roughly like g2 in order that the spin gap is constant.
Naively, one indeed expects that softer (i.e. with smaller
Ω) phonon modes are more effective to break the lattice
symmetry. So, if one requires the spin gap to be constant,
this effect has to be compensated by a smaller coupling g.

0.07 0.12 0.17 0.22 0.27
g

0.10

0.14

0.18

0.22
∆/

J

Fig. 8. Spin gap ∆/J (in units of J) as a function of the
magneto-elastic coupling g for α = 0.36, Ω = 0.3J (◦) and
α = 0, Ω = 0.3J (�). Horizontal marks indicate actual exper-
imental spin gap values.

In Figure 9 we observe that the coupling constant
g(Ω) is roughly 2.5−3 times smaller for CuGeO3 than for
NaV2O5 although the ratio of their spin gaps is only 1.5.
This is an interesting consequence of the large frustration
in CuGeO3. Indeed, a large α opens alone a (quite small)
spin gap and, more importantly, amplifies the effect of the
spin-phonon coupling. This effect is even more drastic in
the static model (3) where the dimerizations δ = 0.014
(CuGeO3) and δ = 0.048 (NaV2O5) have a ratio of about
4 [17].
The model (2) seems to describe accurately the spin-

Peierls transition. Theoretical parameters have been de-
duced from experiment and the ground state properties
of the spin-Peierls phase have been established. We have
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Fig. 9. FrequencyΩ in units of J as a function of the magneto-
elastic coupling g insuring a constant spin gap (see text) for
α = 0.36 (◦) and α = 0 (�).

provided evidences in favour of the dynamical breaking of
the lattice periodicity with the simultaneous opening of
the spin gap. Next, we shall study the dynamical proper-
ties of this model.

6 Dynamical properties

INS is a powerful experiment probing the momentum-
dependence of the spin dynamics. INS has been performed
on CuGeO3 single crystals [13,12] and on NaV2O5 pow-
ders [3]. It provides a direct measure of the dynamical
spin-spin structure factor,

Szz(q, ω) =
∑
n

|〈Ψn|Sz(q)|Ψ0〉|
2δ(ω − En + E0), (5)

where |Ψ0〉 is the (singlet) ground state of energy E0 and
the sum is performed on all triplet excited states |Ψn〉 (of
energy En). Sz(q) is normalized as 1/

√
L
∑
j exp(iqj)S

Z
j .

The INS spectrum can be easily computed by exact
diagonalization techniques [33]. Results on a 20 site chain
are shown in Figure 10a for CuGeO3 and in Figure 10b
for NaV2O5 with a frequency Ω = 0.3J . In both cases we
observe a well defined q-dependent low energy structure
as for the static model (3). Its bandwidth (i.e. the energy
at the maximum of the dispersion at q = π/2) is typically
ωmax ∼ 1.1J for CuGeO3 and ωmax ∼ 1.6J for NaV2O5.
This second value is very close to the Des Cloizeaux-
Pearson value of π/2 [38] of the Heisenberg chain in con-
trast to the case of CuGeO3 which exhibits a large frus-
tration. The ratio ωmax/J could therefore be considered
as an additional accurate measure of the amount of frus-
tration within the chain since the parameter α alone de-
termine approximately ωmax/J . It is interesting to notice
also that, in the case of a frustrated chain (CuGeO3), the
upper limit of the continuum seems to be better defined.
At low energy, the dimerization gap leads to major dif-

ferences with respect to the Heisenberg chain. First, there
is no intensity for ω < ∆. Secondly, the magnon branch
is well separated from the continuum by a finite gap (see

below) so that the magnon excitation can be interpreted
as a spinon-spinon bound state [23]. This bound state was
also found in the static model (3) for CuGeO3 [24,19] and
NaV2O5 [17].
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Fig. 10. Szz(q, ω) as a function of ω/J calculated on a 20 site
chain for q = n π

10
, n = 0, · · · , 10; (a) CuGeO3 parameters,

α = 0.36, g = 0.109, Ω = 0.3J ; (b) NaV2O5 parameters,
α = 0, g = 0.270, Ω = 0.3J . A broadening of the δ-functions
ε = 0.04J was used.

The dispersion relations of the magnon branch (◦), the
second excitation (�) and the upper limit of the contin-
uum (♦) in the dynamical model (2) are plotted in Fig-
ure 11a for CuGeO3. The ‘∗’ symbols correspond to experi-
mental results from reference [13] and filled symbols corre-
spond to infinite size extrapolations at momenta q = π/2
and q = π. Similar dispersion relations are shown in Fig-
ure 11b for NaV2O5 and the position of the experimental
q = π spin gap [3] is indicated by an arrow. Note that
we have explicitly checked that the magnon branch is well
separated from the continuum. A finite size scaling anal-
ysis of the energies of the two lowest triplet states (•, �)
is indeed possible at momentum q = π/2. Figures 11a, b
clearly show that there is a finite gap between the first
branch and the continuum as in the static model. It is
consistent with the fact that the continuum corresponds
to solitonic spin-1/2 excitations (or spinons) and that soli-
tons and antisolitons can bind in pairs with momenta close
to q = π/2 [23]. Such a dougle gap feature was indeed ob-
served experimentally [39].
It is important to notice that the dispersion relation is

not symmetric with respect to q = π/2 in contrast to
the case of a static dimerization. In fact, such a sym-
metry in the energy spectrum is due to the Bragg scat-
tering resulting from the doubling of the unit cell. Since



26 D. Augier and D. Poilblanc: Dynamical properties of low-dimensional spin-Peierls systems

the dimerization appears only as a true phase transition in
model (2), we expect that the symmetry of the spectrum
with respect to π/2 will only become exact in the ther-
modynamic limit. In the case of CuGeO3, our results are
in very good agreement with INS experiments although
finite size effects are still important. In fact the agreement
improves with increasing system size since the calculated
magnon branch for q > π/2 shifts slightly to lower en-
ergy when L grows (in order to be symmetric with the
q < π/2 part). Note also that energy scales are four times
larger for NaV2O5 than for CuGeO3 which could restrict
INS experiments on NaV2O5 to low energy regions of the
spectrum in the vicinity of q = π.
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Fig. 11. Momentum dependence of the first (◦), second excita-
tion (�) and upper limit of the continuum (♦) on a 20 site chain
for the dynamical model (2). Filled symbols represent extrap-
olations to infinite size (first (•) and second (�) excitations).
(a) CuGeO3 parameters (α = 0.36, g = 0.109, Ω = 0.3J). Ex-
perimental values (∗) are taken from from reference [13]. Units
on the right are in meV assuming J = 160 K (13.8 meV). (b)
NaV2O5 parameters (α = 0, g = 0.270, Ω = 0.3J). Units on
the right are in meV assuming J = 440 K (37.9 meV). The
arrow indicates the experimental value of the q = π spin gap.

It is interesting to compare results for the spin dynam-
ics obtained within the dynamical model to the ones ob-
tained within the static model. Figure 12 shows the lowest
triplet magnon branches and the next triplet excitations
(in fact lower limits of the S = 1 continuum) for param-
eters suitable for CuGeO3. We do not explicitly show the
comparison of the upper limits of the continua since the
two curves obtained within the two models are almost
indistinguishable. This is not surprising because higher

energy excitations are only determined by the magnitude
of the frustration and the coupling to the lattice plays a
minor role here. At lower energy, the magnon branches of
the two models look also very similar for q < π/2 but some
differences appear for q > π/2 since, as explained before,
the dispersion is not symmetric with respect to π/2 in the
dynamical model. This is simply due to larger finite size
effects [40] occurring in model (2) related to the fact that
the lattice periodicity is only spontaneously broken. Once
such finite size effects are taken into account we can safely
conclude that the dispersions of the magnon branches of
the two models in the thermodynamic limit are very close.
Similarly, the discrepancies seen between the positions of
the lower limits of the continua of triplet excitations are
not relevant. Indeed, a detailed finite size scaling analysis
at e.g. q = π/2 reveals that the position of the two lower
limits are in fact quite close (1.117J for (3) to be com-
pared to 1.118J for (2)). An exactly similar comparison
can be done for NaV2O5 (not shown).
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Fig. 12. Momentum dependence of the two lowest triplet exci-
tation energies in CuGeO3 calculated on a 20 site chain for (i)
the dynamical model (2) (α = 0.36, g = 0.109, Ω = 0.3J) (◦)
and (ii) the static model (3) (α = 0.36, δ = 0.014) (�). Units
on the right are meV assuming that J = 160 K (13.8 meV).

The spin static structure factor,

Szz(q) =

∫
dωSzz(q, ω),

which can be obtained in INS by integrating the spectrum
over energy is plotted in Figure 13 for CuGeO3 (α = 0.36,
g = 0.109, Ω = 0.3J) (◦) and NaV2O5 (•) (α = 0, g =
0.270, Ω = 0.3J) for a 20 site chain. It is peaked near
q = π as a result of strong short range AF correlations.
Indeed the width of the peak at q = π is directly related
to the inverse magnetic correlation length. Note however
that Szz(π) is slightly suppressed in CuGeO3 compared
to NaV2O5 because of the interchain frustration. In any
case, the results are very similar to those obtained with
the static dimerized model. The relative weights of the
magnon peak in Szz(q, ω) are also shown for CuGeO3 (�)
and NaV2O5 (�). Their behaviors versus q suggest that
working in a range of momenta around q = 0.8π might be
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Fig. 13. Static factor structure for CuGeO3 (α = 0.36, g =
0.109, Ω = 0.3J) (◦) and NaV2O5 (α = 0, g = 0.270, Ω =
0.3J) (•) calculated on a 20 site chain. Squares correspond to
the weight of the lowest peak for CuGeO3 (�) and for NaV2O5
(�).

more appropriate experimentally in order to have clearer
evidences for the continuum.

7 Conclusions

In order to describe one dimensional spin-Peierls com-
pounds, a magneto-elastic (i.e. spin-phonon) coupling has
been considered and is shown to be responsible for a dy-
namical and spontaneous breaking of the lattice periodic-
ity followed simultaneously by the opening of a spin gap.
The resulting symmetry-broken ground state is consistent
with the existence of a frozen dimerization such as the
one obtained in a mean-field treatment of the coupling
to the lattice. We have used exact diagonalization tech-
niques to calculate static and dynamical properties of this
model. Controlled truncation procedures have been ap-
plied to the bosonic Hilbert space of the Hamiltonian. By
using a finite size scaling analysis, we have compared var-
ious physical quantities to the experimental ones (in the
case of CuGeO3 and NaV2O5) and we have determined
a range of suitable parameters for the model. We predict
that the spin-phonon coupling is 2 or 3 times larger in
NaV2O5 than in CuGeO3. The INS spectrum calculated
within this model is found to be qualitatively similar to
the one obtained in the static model with a finite gap sep-
arating the magnon branch from the continuum of triplet
excitations above.

D.A. acknowledges useful discussions with M. Albrecht and
S. Capponi. We thank L. P. Regnault for communicating to us
the data of reference [13], J. Riera for valuable comments and
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Phys. Rev. B 53, 9666 (1996) in one, two dimensions re-
spectively.

23. G.S. Uhrig, H.J. Schulz, Phys. Rev. B 54, R9624 (1996);
for a discussion on soliton confinement see e.g. I. Affleck,
preprint cond-mat/9705127.

24. A. Fledderjohann, C. Gros, Europhys. Lett. 37, 189
(1997).

25. A detailed review on electron-phonon interaction in one-
dimensional correlated electron systems can be found
in “One-dimensional Fermi liquids”, J. Voit, Rep. Prog.
Phys. 58, 977 (1995).

26. W. Stephan, M. Capone, M. Grilli, C. Castellani,
preprint cond-mat/9605164; D. Khomskii, W. Geerstma,
M. Mostovoy, Czech. Journ. Phys. 46, Suppl. S6, 32 (1996).

27. T. Tonegawa, I. Harada, J. Soc. Jpn 56, 2153 (1987).
28. R. Chitra, S. Pati, H.R. Krishnamurthy, D. Sen, S.
Ramasesha, Phys. Rev. B 52, 6581 (1995).

29. In two dimensional systems, similar approaches can be
found e.g. in A. Dobry, A. Greco, S. Koval, J. Riera,
Phys. Rev. B 52, 13 722 (1995); D. Poilblanc, T. Sakai,
W. Hanke, D.J. Scalapino, Europhys. Lett. 34, 367 (1996).



28 D. Augier and D. Poilblanc: Dynamical properties of low-dimensional spin-Peierls systems
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